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We provide a model of a stationary laminar flow in a channel at the bottom of which plants
grow in a dense layer. Since this layer of plants is dense, we treat it as a porous medium
and we propose to describe the flow in such a medium by Brinkman’s equation. The flow
in the fluid layer located above (infiltrated by water) the layers of plants is described by
the Stokes equation. We show that such a model gives results consistent with experimental
observations. We indicate also that this new model complements the previously given model
in which the benthonic plants were considered as a suspension, so the previous model referred
to the channel at the bottom of which the plants grew rare. For high permeability of the
porous medium, we arrive at the results obtained for the medium filled with a liquid with a
suspension.
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1. Introduction

The aim of the study is to provide a new description of the steady flow of a liquid in the channel
at the bottom with obstructions, in particular bottom plants. The novelty of our description
consists in replacing the bottom obstacles with a porous medium in which the liquid flow is
described by the Brinkman equation.

Even before the last two decades, the problem of flow in a channel with a bottom vegetation
was regarded as an open task. First, it is worth to mention a book on asymptotic behaviour of
solutions to boundary value problems at rough edges (Marchenko and Khruslov, 1974). Apply-
ing a certain averaging method (type of homogenization), these authors essentially derive the
stationary Brinkman equation. One of the proposed methods was the double averaging method
(after space and time) introduced as natural extensions of single averaged Reynolds equations
(Nikora et al., 2001). The averaging method replaces the turbulence field with an additional
member – the turbulence tensor.

The problem of flow through an overgrown channel is related to the problem of flow over an
uneven bottom, which has recently been discussed by many authors (Malevich et al., 2006).
The flow in the channel with a bottom bed vegetation was considered as a turbulent flow,

and it was pointed out that the flow velocity distribution with the height of the liquid column
has a shape described by tanh function (Nepf, 2012).

The mutual influence of the bottom plant deformation and the water current was accounted
for by Kubrak et al. (2015), Tang (2019) and D’Ippolito et al. (2019, 2021).

The problem of flow in a channel with plants on the bottom was solved as a task of two-
-component flow. It was pointed out that there exists a possibility of appearing vortices both
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in the bottom area occupied by plants, and at the interface of the plant canopy and free flow
(Yang and Choi, 2009, 2010; Huai et al., 2013). This approach boils down to the acceptance of
viscosity increased by the effect of turbulence in the canopy region.

Experimental studies of flows in a channel with a porous bottom in the aspect of the
Brinkman equation were carried out by Morad and Khalili (2009).

In our work, we also treat the flow in two layers, denoted by A and B. We propose a model
of a stationary laminar flow in the channel at the bottom of which plants grow in a dense layer.
This bottom area is denoted by the letter B, and it is treated as a porous medium. We admit
that the flow in such a medium is described by Brinkman’s equation. The flow in the fluid layer
located above (layer A) is described by Stokes’ equation (Wojnar and Bielski, 2015).

Fig. 1. Flow of the stream is developing in two manners depending on which regions of A or B, is
occupied. In region A the flow is laminar, while in region B we deal with a seepage through the porous

medium. The gravity acceleration vector g has two components [gx, gy] = [g sinα,−g cosα]

At the interface of A and B layers, we assume continuity of velocity and continuity of tan-
gential stresses. Therefore, we omit possibilities of turbulence at the interface. The vertical
distribution of velocity in our B layer region is described by sinh function, and by a parabola in
A layer region.

If the asperities, stones, plants or other obstacles are small, in the limiting case we arrive at
the concept of the rough bottom. In particular, it is a case in lakes, streams, rivers and open
channels, in which different types of plants may grow (Yang and Choi, 2009, 2010; Huai et al.,
2013; Evangelos, 2012).

The asymptotic analysis was applied to the flow over the rough bottom in the paper by
Bielski and Wojnar (2021).

Firstly, in our study we present Brinkman’s equation (Section 2) and Stokes’ equation (Sec-
tions 3 and 4), which will be applied in the paper. The solutions to Brinkman’s equation for
special problems are given in Sections 5 and 6, where numerical examples are presented.

Section 7 compares our results with the experimental evidence obtained in (Kubrak et al.,
2015; Caroppi et al., 2019; Pu et al., 2019). For illustration, a two-dimensional but one-directional
flow past the plane covered with obstacles is considered, and the results of analytical calculations
are presented for both ways of approximation. On the interface, continuity of velocity and shear
stress is postulated.

It will be shown that it is consistent with the experiment to assume continuity of velocity and
shear stresses at the boundary of both media (porous, benthic plants with the fluid, medium B)
and the free fluid (medium A).

In Section 8 a proof is given that solution (7.6) obtained for the porous medium in Section 5
passes gently in the limit of high permeability into a solution for suspension, given by Eq. (21)
in (Wojnar and Bielski, 2015). In such a manner, this new model complements the previously
proposed one, in which bottom plants were considered as a suspension.
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2. Darcy’s and Brinkman’s laws

Darcy’s law was formulated on the basis of experimental studies of water seepage in sand
columns. In the contemporary formulation, it states a linear relation between the velocity v
and the sum of the gradient of pressure ∇p and the body force γ. It summarizes properties
exhibited by the ground water flowing in the bulk of aquifers. However, it cannot be used to
account for transitional flow between boundaries of a porous medium and the Stokes flow beyond
this medium. Experimental tests have shown that flow regimes with Reynolds numbers up to 10
may still be Darcian, as in the case of the ground water flow. Darcy’s law can be derived from
Stokes’ equation of a viscous fluid flow via homogenisation (Auriault, 2009; Bielski and Wojnar,
2008).
Henri Coenraad Brinkman proposed an equation describing seepage of the fluid through a

porous medium in a more adequate way than Darcy’s law does, cf. Brinkman (1949), Auriault
(2009), Joodi et al. (2010). The equation gives the following dependence between the fluid
velocity v and the sum of the pressure gradient ∇p and the body force vector γ = ρg

v =
K

η
(−∇p+ γ) +K

η′

η
∆v (2.1)

Here p denotes the pressure and K is the permeability of the porous medium. The coefficient η is
the fluid viscosity and the coefficient η′ (known also as the effective viscosity) is a modified fluid
viscosity which may be different from η. Both coefficients, η and η′, are assumed to be constant.
The coefficient η′, Eq. (2.1), is a measure of significance of the Stokesian part in Brinkman’s
equation. The η′ coefficient is estimated experimentally. Some computational evaluation of η′

was given by Valdes-Parada et al. (2007).
Far from the boundaries of the porous medium, in the bulk, where the values of velocity

gradients are low, the Laplacian ∆v can be neglected, and Eq. (2.1) is approximated by Darcy’s
equation

v =
K

η
(−∇p+ γ) (2.2)

For high values of K, Stokes’ equation (it is Navier-Stokes’ equation with the inertial terms
neglected) is obtained

−∇p+ γ = η∆v (2.3)

If we apply the operator ∇ to Eq. (2.1), and if the fluid is incompressible

∇ · v = 0 (2.4)

then we receive ∇ · (−∇p+ γ) = 0.

3. Stokes’ equation

We consider the flow of an incompressible viscous fluid of density ρ and viscosity η, and examine
a gravity driven steady flow of this fluid. The velocity field ruling in the fluid is given by the
vector v = v(x), with x = [x1, x2, x3].
Navier-Stokes’ equation of steady motion of an incompressible fluid with constant viscosity η

under the pressure gradient ∇p and the gravitation force γ = (γi), i = 1, 2, 3, reads

ρvk
∂vi
∂xk
= γi −

∂p

∂xi
+ η

∂2vi
∂xj∂xj

(3.1)
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We admit that the body force γ does not depend on the position x. If the velocity has only one
component, say v1, it is when

v = [v1, 0, 0] (3.2)

and this component does not depend on x1 and x3, it is v1 = v1(x2), then the left hand side of
Eq.(3.1) vanishes and the equation becomes, cf. Eq. (2.3)

γi −
∂p

∂xi
+ η

∂2vi
∂xj∂xj

= 0 (3.3)

This is known as Stokes’ equation. In an explicit form

γ1 −
∂p

∂x1
+ η
(∂2v
∂x22
+
∂2v

∂x23

)
= 0 γ2 −

∂p

∂x2
= 0 (3.4)

For brevity, we are omitting subscript 1 and put simply v1 ≡ v.
In Eq. (3.4), the pressure p does not depend on x3 and the component γ3 vanishes.

4. Flow of the fluid with the free upper surface

We consider the flow of the fluid on an inclined plane under the influence of gravity, see Fig. 1.
Thus, we discuss only a central part of the fluid stream and neglect the influence of the stream
banks, so the problem is two-dimensional.
We change the notation, and substitute

x1 = x x2 = y x3 = z and γ = [γx,−γy, 0]

Let a layer of an incompressible viscous fluid of total thickness h be bounded above by a free
surface and below by a fixed plane inclined at an angle α to the horizontal, see Fig. 1. Let us
determine the steady flow due to gravity when the flow in the upper part (region A) is free and
in the lower part (region B) it passes through a porous medium.
We take the fixed plane as the xz-plane, with the x-axis in the direction of flow and y pointed

upward in the direction perpendicular to the bottom. Let the viscosity be a function of y only
and we seek for a solution depending only on y. Stokes’ equations (3.4) with v1 = v(y) in a
gravitational field reduce to two equations

η
d2v

dy2
+ γx = 0

dp

dy
+ γy = 0 (4.1)

Here (see Fig. 1)

γx = ρg sinα γy = −ρg cosα (4.2)

and g denotes the value of gravitational acceleration.

5. Flow past porous medium

We refer again to Fig. 1. The space accessible to the fluid is divided in two regions, A and B. In
each region the flow of the same fluid (with viscosity η) is developing in two different manners: in
upper region A (i.e., for h1 < y < h), the flow is Stokesian, and in lower region B (for 0 ¬ y < h1)
we are dealing with the seepage through a porous medium.
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5.1. Flow in the region A

We retain notation of components introduced in the previous Section. From the first equation
of the system (4.1), we get after the second integration

v(y)− vB =
1

η

(
−
1

2
γxy
2 + Cy

)
(5.1)

The constants vB and C are to be found from the boundary conditions.
Integration of the second equation of the system (4.1) gives

p(y) = −γyy + p0 (5.2)

where p0 is a constant.
At the free surface (y = h), where the atmospheric pressure pA prevails, we have p = pA.

Hence p0 = pA + γyh, and for h > y > h1, one obtains

p = (h− y)γy + pA (5.3)

At the free surface also σxy = 0

σxy(h) =
{
η
dv

dy

}

y=h
= 0

and after Eq. (5.1)

C = γxh (5.4)

At the bottom of region A, it is for y = h1, in other words at the interface of regions A and B,
the fluid velocity v(h1) ≡ vint is still unknown. The integration constant vint will be found from
comparison with the solution in lower porous region B. Now, for the region h > y > h1, we write
only

v(y) =
γx
η

(
h−
1

2
y
)
y + vint (5.5)

This is a formal solution for region A (h1 < y < h) in which the constant vint is unknown.
The shear component in the flow in region A is a linear function of y and reads

σxy = γx(h− y) (5.6)

This is the shear distribution in region A.

5.2. Flow in lower region B

We assume, as in the previous Section that ∂p/∂x1 = 0, cf. Eq. (5.3), and apply Brinkman’s
equation (3.1) for the study of flow in the gravitational field. As in the previous Section, we
assume also that just the component vx ≡ v does not vanish, and it depends on the y variable
only. In view of these assumptions, Brinkman’s equation transforms into

d2v

dy2
−
η

η′K
v +
γx
η′
= 0 (5.7)

Its general solution is

v = b1e
ay + b2e

−ay +
K

η
γx (5.8)
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where

a =

√
η

η′K
(5.9)

while b1 and b2 are constants to be found.
Since the velocity v at the bottom (y = 0) should vanish, we have from Eq. (5.8)

b1 + b2 = −
K

η
γx (5.10)

Now, three constants, b1, b2 and vint are to be found, cf. Eqs. (5.9) and (5.8).

5.3. Interface between the free flow (A) and seepage (B) regions

At the interface between regions A and B, the continuity of velocities and shear stresses
should be assured. The continuity of velocities at y = h1 requests that

vint = b1e
ah1 + b2e

−ah1 +
K

η
γx −

γx
η

(
h−
1

2
h1
)
h1 (5.11)

The continuity of shear stresses means that

gx(h− h1) = aη
′b1
(
eah1 + e−ah1

)
+ aη′

K

η
γxe
−ah1 (5.12)

since by Eq. (5.10) we have b2 = −(K/η)γx − b1. Finally, by Eq. (5.12)

b1 =
h− h1 − aη

′K
η
e−ah1

aη′(eah1 + e−ah1)
γx (5.13)

In this manner, the explicit form of our solution reads

v =






γx
η

(
h−
1

2
y
)
y + vint in A

(h− h1
aη′

−
K

η
e−ah1

)
γx
eay − e−ay

eah1 + e−ah1
+
K

η
γx(1− e

−ay) in B
(5.14)

where

vint =
(h− h1
aη′

−
K

η
e−ah1

)
γx
eah1 − e−ah1

eah1 + e−ah1
+
K

η
γx(1− e

−ah1)−
γx
η

(
h−
1

2
h1
)
h1

and a is given by formula (5.9).

6. Calculatory examples

Relation (5.14) was applied in the following examples.
The flow in the unit depth, 0 < y ¬ h = 1, partially through the porous medium at the

bottom, 0 < y ¬ h/2 = 1/2, is considered. The calculations are performed for the parameters
given in the natural units, in which the value of volume force γx = 1, see Eq. (4.2)1, and
the value of viscosity η = 1, see below the relations (7.2) and (7.3). The results for different
permeabilities κ are shown in Figs. 2-4. The permeability κ given in the natural units is related
to the permeability K given in the metrical system by Eq. (7.1).
In Fig. 2, we present the velocity v as a function of the space variable y for different perme-

abilities, beginning from the lowest κ = 0.001 to the highest κ = 0.015. The effective viscosity κ′
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is equal to the viscosity κ in this case. The natural system of units defined by (7.2) and (7.3)
are used. For values κ = 0.001 and κ = 0.002, the flow in the bulk of the porous medium is
constant and is near to Darcy’s law. We observe that the velocity v in the bulk porous medium
is almost constant except for the regions nearest to the boundaries, y = 0 and y = 1/2. At these
boundaries the velocity changes abruptly but continuously. In this case, the velocity in the bulk
of the porous medium does not depend on the height y, as is provided by Darcy’s law (3.2).
Namely, according to this law for ∇p = 0, as is in our case, the velocity v is proportional to the
given volume force γx.
The region of the abrupt change is determined by the exponent coefficient a, Eq. (5.9). With

the increasing permeability κ, this coefficient decreases and the region of the velocity change
becomes larger, as observed in Fig. 2 for κ = 0.010 and κ = 0.015.

Fig. 2. Dependence of the fluid velocity v on the height y for growing permeabilities κ equal respectively
to 0.001, 0.002, 0.010, and 0.015 (in natural units). In this case, we accept κ = κ′

7. Relation to the experiment

We verify our proposal with an experiment performed by Kubrak et al. (2013). To this end, we
solve the problem formulated in Table 1, where

Table 1. Darcy’s description of the flow past bottom plants

Range Equation Solution

0 < y < 0.1 d2v/dy2 = −1 v = −0.5y2 + Cy

0.1 < y < 0.35 v = κ v = κ

0.35 < y < 1 d2v/dy2 = −1 v = (1− 0.5y)y +A

C =
κ

h1
+
1

2
h1 A = κ−

(
1−
1

2
h2
)
h2

with h1 = 0.1 and h2 = 0.35.
We observe in Table 1 that in regions 0 < y < 0.1 and 0.35 < y < 1, the free flow is admitted,

and in 0.1 < y < 0.35 the Darcy flow occurs.
In Fig. 3, we compare our solution of Darcy’s problem with the velocity distribution calcu-

lated in Kubrak et al. (2012). The experimental points were measured at different sections of
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the flowing stream and were significantly spread. Only one section of experimental data is in
close agreement with the theory of Kubrak et al. (2013) basing on the analysis of deflection of
individual stems. We observe that this theoretical line is in accord with the velocity distribution
given by Darcy’s equation. In general fitting of experimental data, Brinkman’s distribution of
velocity is more consistent than Darcy’s description, and fits better with the experimental results
(Kubrak et al., 2013).

Fig. 3. Comparison of experimental results and the solution given by Kubrak et al. (2013) (upper) with
description obtained by Darcy’s law (lower). The velocity scale on horizontal axes in both figures are

the same

In Fig. 4, a family of velocity distributions obtained from Brinkman’s equation is revealed.
In this figure, the permeability κ is the same for all curves but the permeability

κ′ = κ
η′

η
(7.1)

is varied.

From two Brinkman’s viscosity coefficients, the first η is the same for all the curves but the
second viscosity coefficient η′ is varied. By a suitable choice of η′ (fitted to the experimental
conditions) we can describe behaviour of velocity distribution in the given section of the fluid
flow. Darcy’s flow given in Table 1 is a limiting process for considered Brinkman’s flows (it gives
the upper bound of velocities for small velocities, v < κ, and the lower bound for velocities
v > κ). The natural unit of pressure p̆ is the x component of the hydrostatic pressure at the
bottom, which assures the unit value of the x component of the body force. Thus

x̆ = h v̆ = 3vmean =
ρ

η
h2g sinα p̆ =

η

h
3vmean = ρhg sinα (7.2)
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Fig. 4. Dependence of the fluid velocity v on the height y for a given permeability κ = 0.075 and for
different effective permeabilities κ′ equal to 0.0002, 0.0005, 0.001 and 0.0025 (in natural units). The
behaviour of velocity given by Darcy’s equation, cf. Table 1, is given by the continuous line

Consequently, the unit of time is

t̆ =
x̆

v̆
=

h

3vmean
=

η

ρhg sinα
(7.3)

Then, new variables x̃, ṽ and p̃ are introduced: x̃ ≡ x/x̆, ṽ ≡ v/v̆ and p̃ ≡ p/p̆.

In the new variables, Stokes’ and Brinkman’s equations have the form

d2ṽ

dỹ2
+ 1 = 0

dp̃

dỹ
+ cotα = 0 (7.4)

and

ṽ = κ
(
−
∂p̃

∂x̃
+ 1
)
+ κ′
(∂2ṽ
∂x̃2
+
∂2ṽ

∂ỹ2

)
(7.5)

where

κ ≡
K

h2
κ′ ≡

K

h2
η′

η
(7.6)

8. Limit passage to high permeabilities

It would be of interest to study our solution for high values of the permeability K.

For small values of the coefficient a, Eq. (5.9), that is for high values of the permeability K,
Brinkman’s equation (3.1) transforms into Stokes’ equation (3.3).

We ask whether for small values of a it is possible to regain relation (5.11) of the previous
paper (Wojnar and Bielski, 2015) from solution (5.14) in the present paper.

We recall, for compactness of the derivation, that Eq. (21) of the paper (Wojnar and Bielski,
2015) in the notation of the present paper reads

v(y) =
1

η
γx
(
h−
1

2
y
)
y
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In the present problem solution (5.14), for small a we develop exponentials in Taylor’s series
and receive

v = b1
(
1 + ay +

1

2
a2y2 + · · ·

)
+ b2
(
1− ay +

1

2
a2y2 + · · ·

)
+
K

η
γx

or

v = b1 + b2 + (b1 − b2)ay + (b1 + b2)
1

2
a2y2 +

K

η
γx (8.1)

if powers of a higher than 2 are rejected. Firstly, we observe that in virtue of Eq. (5.10) the sum
b1 + b2 + (K/η)γx vanishes and the constant term in Eq. (5.11) is equal to zero, similarly as in
Eq. (21) of our previous paper (Wojnar and Bielski, 2015).
Next, we find the coefficient at y2. We use Eq. (5.10) and get

(b1 + b2)
1

2
a2 = −

K

η
gx
1

2
a2 = −

1

2

γx
η′

Here, also relation (5.9) was used. This result is identical with the coefficient at y2 in Eq. (21)
of the paper (Wojnar and Bielski, 2015), if only η′ is substituted by η.
The coefficient at the linear term in Eq. (8.1) reads (b1 − b2)a, or accounting for Eq. (5.10)

(
2b1 +

K

η
γx
)
a

For small a, if exponentials in b1 are to be linearized

(
2
h− h1 − aη

′K
η
(1− ah1)

aη′(1 + ah1 + 1− ah1)
γx +

K

η
γx
)
a

we get

h− h1
η′
γx − a

K

η
(1− ah1)γx +

K

η
γxa =

h

η′
γx

If only η′ and η are identified, one obtains the linear coefficient of flow described by Eq. (21) of
the paper (Wojnar and Bielski, 2015). Therefore, the asymptotic behaviour (as K →∞) of our
solution for the porous medium is that of the suspension flow.

9. Conclusions

The aim of our work was to provide a simple way of describing flows in channels with an over-
grown bottom. We chose an analytical method based on Brinkman’s law, wanting to provide a
specific simple way of describing such a flow. Bottom flow problems can be solved by Compu-
tational Fluid Dynamics methods, in which different porosities of the bottom can be taken into
account. However, in this way we get numerical results without being able to get a general view
of the problem. It is fortunate that our simple analytical description captures the main features
of experimental measurements. Our results are consistent with the experimental data reported
in the work of Kubrak et al. ((2012, 2013) and Yang and Choi (2009, 2010).
We regard that such a system permits one to study characteristic traits of the flows in beds

of rivers (canals, pipes, lakes) with obstacles at the bottom (such as stones, plants or other
structures), which are not susceptible to outer influences.
This issue has been studied for over two decades and our contribution is to introduce

Brinkman’s flow to the description of flows through obstacles.
Above, we have introduced the porous medium to simulate the obstacles met by the flowing

water in river beds, and applied Brinkman’s equation to that.
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• We have applied Brinkman’s equation to describe a flow through a porous medium at the
canal bottom.

• We have demonstrated that for low permeabilities, the flow in the bulk of a porous medium
is Darcy’s flow.

• For high permeabilities, the influence of boundaries (described by the term of Brinkman)
becomes visible and the flow resembles the flow of suspensions discussed in (Wojnar and
Bielski, 2015). This also finds an expression in the limit passage to high permeabilities (cf.
Section 8). However, quantitative differences are significant since in the present solution a
sudden, albeit continuous change of the fluid velocity on the porous medium, a free fluid
interface is observed.

• It is worth noting that from the qualitative point of view our solution is similar to the
solution in (Nepf, 2012). We would like to draw the attention to an appropriate match of
our results with experimental data in (Kubrak et al., 2013).

Comparing quantitatively and qualitatively our calculations with the experimental results
obtained by Kubrak et al. (2013), we have found that by a suitable choice of material parameters
we can model the real flows past the bottom with obstacles within a wide range of concentrations.
Significance of the parameter called by Brinkman as the effective viscosity coefficient η′ has been
demonstrated.
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